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Abstract
The sound attenuation in fluid mercury near the liquid–gas critical point
(Tc = 1478 ◦C, Pc = 167 MPa) has been measured by means of the ultrasonic
pulse–echo method at 20 and 32 MHz. We derive the entropy decay rate
from the observed attenuation on the critical isochore and estimate that the
dynamic critical exponent of mercury is about 3. This suggests that the dynamic
critical phenomena for acoustic properties of mercury are similar to those
for the insulating fluids. Using the Einstein–Kawasaki formula, we estimate
also the correlation length ξ = ξ0(T /Tc − 1)−ν on the critical isochore with
ξ0

∼= 4.1 ± 1.0 Å.

It is established that insulating monatomic fluids near the liquid–gas critical point belong to the
universality class of the three-dimensional (3D) Ising model [1]. For expanded liquid metals,
on the other hand, the metal–nonmetal (MNM) transition occurs near the critical density ρc and
it has been speculated [2] that the intermolecular forces mediated by electrons should give rise
to unique critical phenomena. The MNM transition in mercury occurs at 8–9 g cm−3, which is
large relative to ρc = 5.8 g cm−3 [3], while those in alkali metals occur at densities very close to
ρc. In caesium, rubidium and mercury, a large deviation from the ‘law of rectilinear diameters’
has been observed [2], which may reflect the difference in electronic properties between the
liquid and gas phases. In spite of the large diameter anomaly, the critical exponents α and
β, which are deduced from the shape of the coexistence curve, have been found to be close
to the 3D Ising values (α = 0.110, β = 0.325 [4]) [2]. These findings suggest that the
static critical phenomena of liquid metals belong to the same universality class as those of the
simple insulating fluids. However, this does not necessarily mean that the dynamic critical
phenomena of metallic fluids are the same as those of the insulating fluids. This is because one
might naively question which of the so-called cluster convection [5] and the electron transport
plays the more important role in the thermal conduction of the liquid metals near the critical
point.
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In this letter, we examine the sound attenuation in Hg near the critical point (Tc = 1478 ◦C,
Pc = 167 MPa [3]) as a first systematic study of the dynamic critical phenomena in Hg;
evidence for the enhanced critical sound attenuation in Hg has already been reported [6, 7].
As for the static critical phenomena, Dladla et al [8] have reported that the sound velocity
at 4 MHz shows a minimum near the critical point. In addition to the critical attenuation,
anomalous increase of the sound attenuation has been observed in the MNM transition range
of Hg [9]. Thus the first purpose of this letter is to separate the critical attenuation αCP from
the observed sound attenuation αOBS by removing the anomalous attenuation due to the MNM
transition. The second purpose is to discuss the dynamic critical phenomena of Hg. Already,
a considerable number of theoretical studies have been made on the sound attenuation near the
liquid–gas critical point [10,11]. Recently a new scaling function for the frequency-dependent
sound attenuation has been presented [12]. Since the new scaling function is expressed as
a general form with the static critical exponents α, ν and the dynamic critical exponent z,
we can use it to derive the entropy decay rate of Hg on the critical isochore. We discuss
whether the dynamic critical phenomena of Hg can be described with z ≈ 3 similarly to the
insulating fluids.

The sound velocity v and the sound attenuation αOBS of Hg have been measured at 20 and
32 MHz in the temperature and pressure ranges up to 1600 ◦C and 210 MPa. We used a sample
cell similar to that described in our previous paper [9,13]: two single-crystalline sapphire rods
8 mm in diameter and 89 mm in axial length were inserted into a single-crystalline sapphire
tube and used as buffer rods for transmitting the ultrasonic waves. The gap between the rods
was the sample part. The cell assembly and two heaters were set in an internally heated steel
high-pressure vessel which was pressurized with argon gas. The temperature of the sample
part was monitored by two W–5%Re:W–26%Re thermocouples.

The sound velocity v was measured by an ultrasonic pulse transmission/echo method [14].
Two Z-cut Pb(ZrTi)O3 transducers were bonded to the cold ends of the buffer rods (transducers
A and B). The sound attenuation αOBS can be deduced from the transmission rate Ts through
the sample. In contrast to the case for ambient conditions, where Ts can be measured with
varying the sample thickness ls , it is difficult to change ls in situ under high temperature and
pressure. Hence, we estimate Ts as follows. We measure the voltages of the transmitted
signals VAB and VBA in both directions. Since fairly long buffer rods are necessary for the
measurements at high temperatures, the sound attenuation due to the sapphire rods is no longer
negligible. Therefore, we measure also VAA and VBB , which are the voltages of the signals
reflected from the interface between the sample and the buffer rods. We derive Ts from the ratio
of the intensity of the transmitted pulse to that of the reflected pulse. In the derivation, we take
into account the correction for the acoustic impedance mismatches between the buffer rods
and the sample Hg. The details of the present method have been described elsewhere [9, 13].

In figure 1(a), the total sound attenuation αOBS at 20 MHz, along two nearly isobaric paths,
is plotted against the density. The pressure values in the figure are those at which the paths cross
the critical isochore. When the density decreases, αOBS increases and reaches a maximum near
ρc = 5.8 g cm−3. In addition to the critical attenuation, a secondary maximum is observed at
8–9 g cm−3, where the MNM transition occurs (see the arrows in figure 1(a)). More detailed
measurements indicate that αOBS at densities larger than 8.0 g cm−3 is almost independent
of pressure [13], which means that the temperature dependence of αOBS at constant density
is small. This suggests that the critical attenuation αCP is negligibly small at densities larger
than 8.0 g cm−3. Moreover, at densities between 8.0 and 9.6 g cm−3, it has been revealed that
the frequency dependence of the secondary maximum is described by a Debye-type relaxation
with the relaxation time τ = 2.2 ns [13], which is experimental evidence for a slow-relaxation
process due to the MNM transition.
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Figure 1. (a) The total sound attenuation αOBS versus density at 20 MHz along two nearly
isobaric paths. The dashed and dotted curves denote the critical attenuation αCP and the anomalous
attenuation in the MNM transition region αMNM , respectively. (b) The critical attenuation αCP

versus density at 20 MHz along four nearly isobaric paths. The pressure values in the figure are those
at which the paths cross the critical isochore. The dashed curves in the figure are guides for the eyes.

At densities smaller than 8.0 g cm−3, on the other hand, αCP is no longer negligible. In
the density region between 7.0 and 8.0 g cm−3, which is relatively far from ρc, the critical
attenuation per wavelength αCP

λ is small and should be proportional to the angular frequency
ω (i.e. the hydrodynamic regime) [15]. We have separated αOBS into the critical attenuation
αCP and the secondary maximum αMNM due to the MNM transition, utilizing the difference
in frequency dependence between the two components [13]. The resultant αMNM becomes
very small around 7.0 g cm−3 [13], which means that αOBS ∼= αCP at densities smaller than
7.0 g cm−3.

The critical attenuation αCP (=αOBS−αMNM ) at 20 MHz, along four nearly isobaric paths,
is plotted as a function of density in figure 1(b). When the density decreases, αCP begins to
increase around 8 g cm−3, and reaches a maximum near ρc. The peak becomes larger as
the pressure approaches Pc. To show the asymptotic behaviour of αCP on approaching the
critical point, the logarithm of the critical attenuation per wavelength, αCP

λ , at 20 MHz on the
critical isochore is plotted against the logarithm of the reduced temperature ε ≡ |T − Tc|/Tc

(as triangles) in figure 2. We plot also the data at 32 MHz (as open circles). At temperatures
close to Tc (ε < 0.03), αCP at 32 MHz was too large to be measured. On approaching the
critical temperature, αCP

λ increases monotonically.
Theoretical works on the critical phenomena have predicted that the critical attenuation

per wavelength αCP
λ should be expressed as a function of the dimensionless frequency

ω∗ = ω/2�ξ [15], where �ξ is the decay rate of the entropy fluctuation with wavenumbers of
order 1/ξ . Here ξ is the correlation length. The decay rate �ξ can be written as

�ξ = Dξ−2, (1)

where D is the thermal diffusivity [16]. In the low-frequency limit ω 
 �ξ , αCP
λ should be

proportional to ω [10]. In the high-frequency limit ω � �ξ ; on the other hand, ξ exceeds
the thermal diffusion length and the perturbed thermal equilibrium cannot be restored within
the period of the sound wave. Thus the frequency dependence of αCP

λ should be suppressed
compared to the linear dependence on ω. Recently, a new scaling function which connects
the low- and high-frequency behaviours has been presented [12]. On the critical isochore, the
scaling function is expressed as a universal function of ω∗ with the static critical exponents α,
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Figure 2. The critical attenuation per wavelength αCP
λ versus reduced temperature ε ≡

|T − Tc|/Tc on the critical isochore at 20 MHz (�) and 32 MHz (◦). The solid curves represent
the theoretical αCP

λ [12].

10–2 10–1

10–8

10–6

1.5 2 2.5

2.6

2.8

3

3.2

|T–TC| / TC

1/
Γ ξ

[s
ec

]

νz=1.89

20MHz
32MHz

νz

R
νz

Figure 3. The inverse decay rate 1/�ξ versus reduced temperature ε ≡ |T − Tc|/Tc on the critical
isochore. The data points are obtained from the observed αCP

λ shown in figure 2 with the aid of
the theory [12] with νz = 1.89. The solid line represents 1/�ξ = Aε−νz with A = 1.60 × 10−11

and νz = 1.89. Inset: the calculated residual sum Rνz versus νz.

ν and the dynamic critical exponent z. Note that the relation between z and �ξ is generally
expressed as �ξ ∝ ξ−z [16].

Since reliable ξ -data have not been obtained experimentally, let us use the scaling function
in discussing the dynamic critical phenomena. The exponent α of Hg has been estimated to
be 0.11 [2, 17]; however, ν and z are not been known accurately. If a value of νz is given, we
can derive �ξ on the critical isochore from the experimental value of αCP

λ by using the scaling
function [12]. Since ξ is proportional to ε−ν , the inverse of �ξ is expressed as 1/�ξ ∝ ε−νz.
Thus we search for the appropriate value of νz as follows.

First we assume a value of νz and derive 1/�
exp

ξ from experimental αCP
λ by using the

scaling function. Next we fit the ε-dependence of 1/�
exp

ξ to 1/�cal
ξ = Aε−νz, where A is a

fitting parameter, by least-squares fitting. We carry out the fitting with several different values
of νz and calculate the residual sum Rνz; then we determine the most appropriate value of
νz which gives the minimum Rνz. In figure 3, the derived 1/�

exp

ξ with νz = 1.89 is plotted
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against ε as an example. The solid line represents the fitting result. In the fitting, we take
the standard deviation represented by the error bar in the figure into account. In the inset of
figure 3, the calculated Rνz is plotted against νz. Rνz exhibits a minimum around νz = 1.93,
which corresponds to z ≈ 3 since ν can be estimated to be 0.63 from the hyperscaling relation:
α = 2 − dν [16], where d (=3) is the dimension of the system. This means that the dynamic
critical phenomena for acoustic properties of Hg are similar to those for the insulating fluids.
The solid curves in figure 2 represent the theoretical estimates of αCP with z = 3 [12], which
reproduce the experimental αCP fairly well.

The result in this letter (z ≈ 3) is consistent with the prediction of mode-coupling
theory [15] in which the thermal diffusivity D is given by the Einstein–Kawasaki formula:

D = kBT

6πηsξ
, (2)

where ηs is the shear viscosity. Combining equation (1) with (2), we estimate ξ on the critical
isochore by using �ξ obtained from the scaling function with z = 3 (see figure 3). As for
ηs at the critical density, we use the extrapolated value from the experimental data [18] since
the critical singularity of ηs should be very weak. The resultant ξ increases monotonically on
approaching Tc and becomes about 86 Å around ε = 0.01. We fit the ε-dependence of ξ by
ξ = ξ0ε

−0.63 in order to estimate the amplitude of ξ , ξ0. The resultant ξ0 is 4.1 ± 1.0 Å, which
is larger than the typical value (∼2 Å [19]) for the insulating monatomic fluids.

There may be a tendency for ξ0 for ionic fluids to usually be larger than the values observed
for non-ionic fluids [20]. Thus the present result of ξ0 = 4.1 Å seems to be reasonable for Hg,
which tends to be slightly ionized. The degree of ionization of Hg near ρc is estimated to be
about 1% from the energy gap between the 6s and 6p bands [21]. It should be noted that the
present result does not conflict with the Ising criticality. Indeed, weakly coulombic solutions
exhibit Ising behaviour [20,22], in contrast to strongly coulombic solutions for which classical
or crossover behaviour has been reported [23, 24].

In summary, the sound attenuation in Hg near the liquid–gas critical point has been
measured by means of the ultrasonic pulse–echo method at 20 and 32 MHz. We have observed a
large increase in sound attenuation near the critical density. By use of the scaling function [12],
we have derived the entropy decay rate on the critical isochore. The dynamic critical exponent
has been estimated to be about 3, which is consistent with the conventional theories. This
means that the dynamic critical phenomena for acoustic properties of mercury are similar to
those for the insulating fluids. Using the Einstein–Kawasaki formula, we have also estimated
the correlation length ξ on the critical isochore. The amplitude of ξ , ξ0, has been estimated to
be 4.1 ± 1.0 Å, which is slightly larger than that for insulating fluid.
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